CONTENTS

I.	Int	rod	uction	I-1
II.	Dis	trib	outed Production Technologies	II-1
			stributed Production Technologies	
		1.	Novel Catalytic Fuel Reforming, <i>InnovaTek Inc.</i>	II-3
		2.	Engineering Development of Ceramic Membrane Reactor Systems for Converting	
			Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels	
		_	(ITM Syngas), Air Products and Chemicals, Inc.	
		3.	Integrated Ceramic Membrane System for Hydrogen Production, <i>Praxair, Inc.</i>	
		4.	Low Cost Hydrogen Production Platform, <i>Praxair Inc.</i>	. II-18
		5.	Encapsulated Metal Hydride Separation Membrane Development, Westinghouse Savannah River Technology Center	. II-23
		6.	Defect-Free Thin Film Membranes for H ₂ Separation and Isolation, Sandia National Laboratories	II-28
		7.	Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, GE Global Research, General Electric Company	
		8.	Hydrogen Technical Analysis: Evaluation of Metal Hydride Slurries, TIAX LLC	
		9.	Water-Gas Shift Membrane Reactor Studies, National Energy Technology Laboratory	
		10.	Integrating a Hydrogen Energy Station into a Federal Building, TIAX LLC	
		11.	Hydrogen from Renewable Energy Sources: Pathway to 10 Quads for Transportation Uses in 2030 to 2050, <i>Directed Technologies, Inc.</i>	. II-53
	B.	Pro	oduction from Biomass	
		1.	Biohydrogen Production from Renewable Organic Wastes,	
			Dept. of Civil and Construction Engineering, Iowa State University	. II-57
		2.	Biological Water Gas Shift Development, National Renewable Energy Laboratory	. II-62
		3.	Supercritical Water Partial Oxidation, General Atomics	. II-68
		4.	Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier, <i>Iowa State University</i>	. II-73
		5.	Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass,	
			Gas Technology Institute	. II-78
		6.	Hydrogen from Biomass - Catalytic Reforming of Pyrolysis Vapors,	
		_	National Renewable Energy Laboratory	. II-82
		7.	Production of Hydrogen from Post-Consumer Residues, National Renewable Energy Laboratory	. II-86
		8.	Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming, <i>National Renewable Energy Laboratory</i>	11-89
		9.	Hydrogen from Biomass for Urban Transportation, Clark Atlanta University	
			Reformer Model Development for Hydrogen Production, Jet Propulsion Laboratory	
	C		otolysis	. 11 70
	٥.	1.	Maximizing Photosynthetic Efficiencies and Hydrogen Production in	
		1.	Microalgal Cultures, <i>University of California, Berkeley</i>	II-104
		2.	Algal H ₂ -Production Systems: Creation of Designer Alga for Efficient and Robust	
		-	Production of H ₂ , Oak Ridge National Laboratory	II-108

II.	Dis	trib	outed Production Technologies (Continued)	
	C.	Pho	otolysis (Continued)	
			Algal Systems for Hydrogen Photoproduction, <i>National Renewable Energy Laboratory</i> Photoelectrochemical Systems for H ₂ Production, <i>National Renewable Energy Laboratory</i> Photoelectrochemical Hydrogen Production, <i>Hawaii Natural Energy Institute</i> ,	. II-119
			University of Hawaii at Manoa	.II-124
		6.	Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry	TT 100
		_	Derived Materials, <i>University of California, Santa Barbara</i>	
	_	7.	Discovery of Photocatalysts for Hydrogen Production, SRI International	.11-137
	D.		ectrolysis	
		1.	Low Cost, High Efficiency Reversible Fuel Cell Systems, <i>Technology Management, Inc.</i>	
		2.	High-Efficiency Steam Electrolyzer, Lawrence Livermore National Laboratory	.II-146
		3.	High-Temperature Solid Oxide Electrolyser System,	II 150
	_		Idaho National Engineering and Environmental Laboratory	.11-150
	E.		gh-Temperature Thermochemical Processes	
		1.	J. J	II 177
		_	Florida Solar Energy Center	.11-155
		2.	Analysis of Solar Thermochemical Water-Splitting Cycles for Hydrogen Production, Florida Solar Energy Center	
Ш	. Ну	dro	gen Storage	III-1
	A.	Co	ompressed/Liquid H ₂ Tanks	
		1.	Hydrogen Composite Tank Project, Quantum Fuel System Technologies Worldwide Inc	III-3
		2.	Development of a Compressed Hydrogen Gas Integrated Storage System (CH2-ISS) for Fuel Cell Vehicles, <i>Johns Hopkins University Applied Physics Laboratory</i>	III-7
		3.	Next Generation Hydrogen Storage, Lawrence Livermore National Laboratory	. III-11
		4.	Hydrogen Storage in Insulated Pressure Vessels,	
			Lawrence Livermore National Laboratory	. III-15
		5.	Low Permeation Liner for Hydrogen Gas Storage Tanks,	
			Idaho National Engineering & Environmental Laboratory	. III-19
		6.	Low Cost, High Efficiency, High Pressure Hydrogen Storage (New FY 2004 Project), <i>QUANTUM Technologies, Inc.</i>	. III-24
	B.	Ну	odrides et al. (1997)	
		1.	Catalytically Enhanced Hydrogen Storage Systems, <i>University of Hawaii</i>	. III-26
		2.	Hydride Development for Hydrogen Storage, Sandia National Laboratories	. III-31
		3.	Complex Hydrides for Hydrogen Storage, Florida Solar Energy Center	. III-38
		4.	High Density Hydrogen Storage System Demonstration Using NaAlH ₄ Based Complex Compound Hydrides, <i>United Technologies Research Center</i>	. III-43
		5.	Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through	
			Molecular Modeling and Combinatorial Methods (New FY 2004 Project),	
			UOP Research Department	. III-48
		6.	Sub-Nanostructured Non-Transition Metal Complex Grids for Hydrogen Storage (New FY 2004 Project), <i>Cleveland State Univercity</i>	. III-50

III.	Ну	drog	gen Storage (Continued)
	B.	Ну	drides (Continued)
		7.	Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity (New FY 2004 Project), <i>United Technologies Research Center</i>
	C.	Cai	rbon Materials
		1.	Hydrogen Storage in Carbon Single-wall Nanotubes, National Renewable Energy Laboratory
		2.	Doped Carbon Nanotubes for Hydrogen Storage, Westinghouse Savannah River Technology Center
		3.	Hydrogen Storage in Metal-Modified Single-Walled Carbon Nanotubes, California Institute of Technology
		4.	Carbon-based Sorbent Systems for an Effective Containment of Hydrogen (New FY 2004 Project), <i>Air Products and Chemicals, Inc.</i>
	D.	Ch	emical Hybrides
		1.	Process for the Regeneration of Sodium Borate to Sodium Borohydride for Use as a Hydrogen Storage Source (New FY 2004 Project), <i>Millennium Cell, Inc.</i>
		2.	Chemical Hydride Slurry for Hydrogen Production and Storage (New FY 2004 Project), <i>Safe Hydrogen, LLC</i>
	E.	Ne	w Materials
		1.	Novel, Light-Element Nanostructured Materials for Hydrogen Storage (New FY 2004 Project), <i>Nanomix, Inc</i>
	F.	Tes	sting
		1.	Standardized Testing Program For Emergent Chemical Hydride And Carbon Storage Technologies, <i>Southwest Research Institute</i>
IV.	Fu	el C	ells
	A.	Tra	Insportation Power Systems
		1.	Fuel Cell Systems Analysis, Argonne National Laboratory
		2.	Fuel Cell Vehicle Systems Analysis, National Renewable Energy Laboratory
		3.	Cost Analyses of Fuel Cell Stack/Systems, TIAX LLC
		4.	Precious Metal Availability and Cost Analysis for PEMFC Commercialization, TIAX LLC IV-17
		5.	DFMA Cost Estimates of Fuel-Cell/Reformer Systems at Low/Medium/High Production Rates, <i>Directed Technologies, Inc.</i>
		6.	Atmospheric Fuel Cell Power System for Transportation, <i>UTC Fuel Cells</i>
		7.	Platinum Recycling Technology Development (New FY 2004 Project), <i>Ion Power, Inc.</i> IV-31
		8.	Platinum Group Metal Recycling Technology Development (New FY 2004 Project), Engelhard Corporation
	B.	Tra	insportation systems Components
		1.	Cost and Performance Enhancements for a PEM Fuel Cell System, Honeywell Engines, Systems & Services
		2.	Development and Testing of a Toroidal Intersecting Vane Machine (TIVM)
			Air Management System, Mechanology, LLC

IV. Fuel Cells (Continued)

B.	Tra	Insportation systems Components (Continued)	
	3. N	Motor Blower Technologies for Fuel Cell Automotive Power Systems, UTC Fuel Cells	. IV-44
	4.	Hybrid Compressor/Expander Module, TIAX LLC	. IV-49
	5.	Carbon Foam for Fuel Cell Humidification, Oak Ridge National Laboratory	. IV-54
C.	Sta	tionary Power Systems	
	1.	Proton Exchange Membrane Fuel Cell Power System on Ethanol, Caterpillar Inc	. IV-58
	2.	New Proton Conducting Solid Sulfide Membranes for Intermediate Temperature	
		Fuel Cells, Iowa State University of Science and Technology	. IV-62
	3.	Fuel Cell Distributed Power Package Unit: Fuel Processing Based on Autothermal	
		Cyclic Reforming, General Electric Company	
	4.	Advanced Buildings PEM Fuel Cell System (New FY 2004 Project), <i>IdaTech, LLC</i>	. IV-71
	5.	150-kW PEM Fuel Cell Power Plant Verification and Regional Demonstration	
		of 150-kW PEM Fuel Cell Power Plant (New FY 2004 Project), UTC Fuel Cells, LLC	. IV-73
	6.	Backup/Peak Shaving Fuel Cell Systems - Design and Development of the	11.75
	7	GenCore TM II (New FY 2004 Project), <i>Plug Power Inc.</i>	
	7. E	Economic Analysis of PEMFC Systems (New FY 2004 Project), Battelle	. IV-//
D.	Fue	el Processing Subsystem and Components	
	1.	Water-Gas Shift Catalysis, Argonne National Laboratory	
	2.	Catalysts for Autothermal Reforming, Argonne National Laboratory	
	3.	Development of Novel Water-Gas-Shift Membrane Reactor, <i>The Ohio State University</i>	. IV-88
	4.	On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for	11/02
	_	Transportation PEM Fuel Cells, <i>United Technologies Research Center</i>	
	5.	Plate-Based Fuel Processing System, Catalytica Energy Systems	
	6.	Quick-Starting Fuel Processors - A Feasibility Study, Argonne National Laboratory	
	7.	Fast Start Reformer Components, Los Alamos National Laboratory.	IV-10/
	8.	Reformate Cleanup: The Case for Microchannel Architecture, Pacific Northwest National Laboratory	IV_113
	9.	Microchannel Steam Reformation of Hydrocarbon Fuels,	. 1 V-113
).	Pacific Northwest National Laboratory	IV-119
	10.	Fuel Processors for PEM Fuel Cells, <i>University of Michigan</i>	
		Sulfur Removal from Reformate, Argonne National Laboratory	
		Selective Catalytic Oxidation of Hydrogen Sulfide, Oak Ridge National Laboratory	
		Effects of Fuel Constituents on Fuel Processing Catalysts, Argonne National Laboratory	
		Testing of Fuels in Fuel Cell Reformers, Los Alamos National Laboratory	
		Development of Reaction Kinetics for Diesel-Based Fuel Cell Reformers,	
		National Energy Technology Laboratory	IV-147
	16.	Reforming of Diesel Fuel for Transportation Applications, Argonne National Laboratory	IV-153
	17.	Advanced High Efficiency Quick Start Fuel Processor for Transportation	
		Applications, Nuvera Fuel Cells, Inc.	IV-157
	18.	Development of a 50-kW Fuel Processor for Stationary Fuel Cell Applications Using	
		Revolutionary Materials for Absorption-Enhanced Natural Gas Reforming	****
		(New FY 2004 Project), ChevronTexaco Technology Ventures	. 1V-163

IV. Fuel Cells (Continued)

E.

Fue	el Cell Stack Subsystem and Components	
1.	Integrated Manufacturing for Advanced Membrane Electrode Assemblies, De Nora N.A	.IV-165
2.	Development of High Temperature Membranes and Improved Cathode Catalysts,	
	UTC Fuel Cells	IV-171
3.	Advanced MEAs for Enhanced Operating Conditions, 3M Company	.IV-178
4.	Ultra-Thin Composite Membrane-Electrode Assembly For High-Temperature Proton Exchange Membrane Fuel Cells, <i>FuelCell Energy, Inc.</i>	.IV-184
5.	Development of High-Performance, Low-Pt Cathodes Containing New Catalysts and Layer Structure, Cabot Superior MicroPowders	.IV-188
6.	Design and Installation of a Pilot Plant for High-Volume Electrode Production, Southwest Research Institute	.IV-194
7.	Scale-Up of Carbon/Carbon Composite Bipolar Plates, <i>Porvair Fuel Cell Technology, Inc.</i>	
8.	Carbon Composite Bipolar Plates, Oak Ridge National Laboratory	
9.	Cost-Effective Surface Modification for Metallic Bipolar Plates,	.1 , 202
٠.	Oak Ridge National Laboratory	.IV-206
10.	. High-Performance, Matching, PEM Fuel Cell Components and Integrated Pilot	
	Manufacturing Processes, 3M Company	.IV-211
11.	High-Temperature Membranes, Case Western Reserve University	.IV-217
12.	. Electrodes for Polymer Electrolyte Membrane Operation on Hydrogen/Air and	
	Reformate/Air, Los Alamos National Laboratory	.IV-221
13.	. New Electrocatalysts for Fuel Cells, Lawrence Berkeley National Laboratory	.IV-226
14.	Low-Platinum Catalysts for Oxygen Reduction at Proton Exchange Membrane Fuel Cell Cathodes, <i>Naval Research Laboratory</i>	.IV-231
15.	Low Platinum Loading Catalysts for Fuel Cells, <i>Brookhaven National Laboratory</i>	
	Direct Methanol Fuel Cells, Los Alamos National Laboratory.	
	Development of Advanced Catalysts for Direct Methanol Fuel Cells,	
	California Institute of Technology	IV-248
18.	Novel Approach to Non-Precious Metal Catalysts (New FY 2004 Project), 3M Company	.IV-253
	Novel Non-Precious Metals for PEMFC: Catalyst Selection Through Molecular Modeling and Durability Studies (New FY 2004 Project), <i>University of South Carolina</i>	
20	Development of a Thermal and Water Management System for PEM Fuel Cells	.1 \ 255
20.	(New FY 2004 Project), Honeywell International Inc.	IV-257
21.	Development of Polybenzimidazole-based, High-Temperature Membrane and	
	Electrode Assemblies for Stationary and Automotive Applications	
	(New FY 2004 Project), Plug Power, Inc.	.IV-259
22.	. Development, Characterization, and Evaluation of Transition Metal/Chalcogen	
	Based Cathode Catalysts for PEM Fuel Cells (New FY 2004 Project),	
	Ballard Power Systems Corporation	
	PEM Stack Durability (New FY 2004 Project), DuPont Fuel Cells	
	. MEA and Stack Durability for PEM Fuel Cells (New FY 2004 Project), 3M Company	.IV-263
25.	Development of a Low-Cost, Durable Membrane and Membrane Electrode	
	Assembly for Stationary and Mobile Fuel Cell Applications (New FY 2004 Project),	11/265
	Atofina Chemicals, Inc	.1V-265

IV. Fuel Cells (Continued

	F.	Cro	osscutting Fuel Cell Characterization and Evaluation
		1.	Neutron Imaging Study Of the Water Transport Mechanism in a Working Fuel Cell, National Institute of Standards and Technology
		2.	Low-Friction Coatings and Materials for Fuel Cell Air Compressors,
			Argonne National LaboratoryIV-271
		3.	Bipolar Plate-Supported Solid Oxide Fuel Cell, Argonne National Laboratory IV-275
		4.	Assessment of Fuel Cell Auxiliary Power Systems for On-Road Transportation Applications, TIAX LLC
		5.	Evaluation of Partial Oxidation Fuel Cell Reformer Emissions, TIAX LLC IV-284
		6.	Modeling and Control of a Solid Oxide Fuel Cell Auxiliary Power Unit, Pacific Northwest National Laboratory
		7.	Montana PEM Membrane Degradation Study, Year 1 Report, CTA
		8.	Microstructural Characterization of PEM Fuel Cells, Oak Ridge National Laboratory IV-300
V.	Tec	hno	ology Validation
		1.	Validation of an Integrated System for a Hydrogen-Fueled Power Park, Air Products and Chemicals, Inc
		2.	Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements, <i>Air Products and Chemicals, Inc.</i>
		3.	Hawaii Hydrogen Power Park, State of Hawaii Department of Business
		4.	Hydrogen Power Park, DTE Energy CompanyV-14
		5.	Power Parks System Simulation, Sandia National Laboratories
		6.	Filling Up With Hydrogen 2000, Stuart Energy USA
		7.	Hydrogen Refueling Technology, <i>HyRadix</i> , <i>Inc.</i>
		8.	Fuel Cell Installation and Demonstration Project In Gallatin County, Montana,
			Zoot Enterprises, Inc
		9.	Global Assessment of Hydrogen-Based Technologies,
			University of Alabama at Birmingham
			Advanced Thermal Hydrogen Compression, <i>Ergenics, Inc.</i> V-36
			Uninterrupted Power Source, Apollo Energy Systems, Inc
		12.	Development of a Hydrogen Fuel Based Power Park (New FY 2004 Project),
X 7 T	T 4		Pinnacle West Capital Corporation
		_	ated Hydrogen and Fuel Cell Demonstration/AnalysisVI-1
	A.	-	stem Analysis
		1.	Research and Development of a Proton Exchange Membrane Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility, <i>Air Products and Chemicals Inc.</i>
		2.	Fuel Choice for Fuel Cell Vehicles: Stakeholder Risk Analysis, TIAX, LLC
		3.	Hydrogen Commercialization: Transportation Fuel for the 21 st Century, SunLine Services Group
	В.	De	monstration
		1.	Development of a Turnkey Commercial Hydrogen Fueling Station,
			Air Products and Chemicals, Inc

VI. In	tegra	ated Hydrogen and Fuel Cell Demonstration/Analysis
B.	De	monstration
	2.	Development of a Natural Gas to Hydrogen Fuel Station, Gas Technology Institute VI-22
	3.	Fuel Cell-Powered Front-End Loader Mining Vehicle, Vehicle Projects, LLC
	4.	Advanced Underground Vehicle Power and Control Fuel Cell Mine Locomotive, Vehicle Projects, LLC
	5.	UNIGEN® Regenerative Fuel Cell For Uninterruptible Power Supply,
VIII C	c ,	Proton Energy Systems VI-35
	-	v and Codes & Standards
A.		fety and Codes & Standards
	1.	
	2.	Hydrogen Codes and Standards, National Renewable Energy LaboratoryVII-6
В.	Sei	nsors for Safety and Performance
	1.	Carbon Monoxide Sensors For Reformate Powered Fuel Cells,
		Los Alamos National Laboratory
	2.	Electrochemical Sensors for Proton Exchange Membrane Fuel Cell Vehicles,
	2	Lawrence Livermore National Laboratory
	3.	Interfacial Stability of Thin Film Sensors, <i>National Renewable Energy Laboratory</i> VII-21
	4.	Development of Sensors for Automotive Fuel Cell Systems, United Technologies Research Center
	5.	Micro-Machined Thin Film H ₂ Gas Sensors, <i>ATMI</i> , <i>Inc.</i> VII-30
	6.	Sensor Development for Proton Exchange Membrane Fuel Cell Systems,
	0.	Honeywell Sensing and Control
	7.	Gallium Nitride Integrated Gas/Temperature Sensors for Fuel Cell Systems, <i>Fluence</i> VII-39
	8.	Fiber Optic Temperature Sensors for PEM Fuel Cells, Oak Ridge National LaboratoryVII-42
	9.	Hydrogen Composite Tank Project (New FY 2004 Project),
		University of California, Irvine
VIII.	Edu	cation
		Education Program Element Planning and Multi-Year R, D&D Plan Development,
	••	U.S. Department of Energy
	2.	Baseline Knowledge Assessment, Oak Ridge National Laboratory
	3.	Database of Existing Hydrogen and Fuel Cell-related Courses and Research Activities
		at Universities, University of Tennessee
IX. Co	nve	rsion DevicesIX-1
A.	Tu	rbines
	1	Reduced Turbine Emissions Using Hydrogen-Enriched Fuels, Sandia National Laboratories IX-3
R	Int	ernal Combustion Engines
Б.	1.	Developing a Thermodynamic Fuel Cell, Sandia National Laboratories
	2.	HCNG Heavy Duty Vehicle Prime Mover, Collier Technologies, LLC IX-13
V A.		yms and Abbreviations
XI. Pr	ımaı	ry Contact ListXI-1

